domingo, 20 de mayo de 2012

ENCENDIDO DE LA CPU

 Los diferentes dispositivos que intervienen: 1) Red Domiciliaria. 2) Estabilizador de Tensión. 3) Botón Power On. 4) Recorrido desde el Motherboard hasta la fuente. 5) Fuente de Alimentación. 6) Alimentación de la Motherboard (Placa Madre). 7) Alimentación de los diferentes dispositivos. 8) VRM (Módulo de Regulación de Voltaje). Red Domiciliaria: Se define como "Red Domiciliaria" a la red eléctrica instalada en un inmueble (con una tensión aproximada entre 100 o 230 ACV). Estabilizador de Tensión: Es el intermediario entre la red domiciliaria y la fuente de alimentación de la computadora. Su función es mantener los niveles de energía relativamente estables para evitar "picos o bajas" de tensión excesivos que puedan dañar los componentes de la PC. Botón POWER ON: La acción de encendido de una computadora personal comienza desde este botón. Se trata de un simple dispositivo que esta conectado a la Motherboard cumple la función de encender la fuente, Es el inicio de todo el proceso. También se puede apagar la PC desde este botón, tan sólo manteniéndolo apretado durante aproximadamente 5 segundos. Recorrido desde el Motherboard hasta la fuente: Cuando ejecutamos la acción de encendido, la tensión corre por el motherboard a través de unos circuitos integrados en él hasta un conector especial de 20 contactos que alimenta la placa madre. Fuente de Alimentación: La fuente de alimentación recibe la corriente de la red domiciliaria y realiza una acción denominada "Rectificación", que consiste en transformar la tensión alterna (ACV) en contínua (DCV) y enviarla a través de las diferentes tramas de cables para alimentar cada componente de la PC. Existen dos tipos: las AT y las ATX. En esta instancia, la fuente recibe la orden del botón de encendido y envía las diferentes tensiones hacia los dispositivos conectados a ella. Alimentación del MotherBoard: El conector de 20 contactos, proveniente de la fuente, que alimenta el motherboard, arroja las diferentes tensiones que los dispositivos necesitan para funcionar. Por ejemplo: 12 Voltios para alimentar las partes mecánicas de los componentes, como los motores que hacen girar los platos de un Disco Rígido, de la disquetera o de las unidades de CD/DVD. Para alimentar las partes lógicas, utiliza sólo 5 V. Por último, hay algunos circuitos de la computadora que necesitan una tensión de 3,3 Voltios para funcionar. Alimentación de los diferentes dispositivos: Cuando las tensiones son las correctas, los dispositivos son alimentados por cada trama de cables, que es la que conduce la energía. VRM (Módulo de Regulación de Voltaje): Es un componente que se encuentra en el motherboard, generalmente, al lado del microprocesador. Su función es regular los valores que salen desde la fuente y alimentan al procesador. Esto significa que, si la fuente emite como valor mínimo 3,3 Voltios, y el microprocesador necesita menos de ese voltaje para funcionar, el encargado de llevar adelante esa tarea es el VRM.

LA FUENTE
Además de convertir la tensión alterna del tomacorriente en continua, que es la que utilizan los circuitos de la computadora, la fuente también asegura que la tensión entregada al motherboard sea la correcta, es decir: no permite que la PC encienda si no están presentes todos los valores adecuados de tensión. Finalmente, distribuye la energía al resto de los componentes internos. La fuente se divide en 2 etapas: Primaria y Secundaria. - Etapa Primaria: Recibe el voltaje de la línea y efectúa la reducción y rectificación principal. - Etapa Secundaria: La corriente ya reducida y convertida a continua, es filtrada y distribuida de acuerdo con los voltajes necesarios para cada componente. Físicamente, la etapa primaria puede identificarse en la fuente porque ésta vinculada a la entrada de corriente. La etapa secundaria, en cambio, puede reconocerse por los cables que salen de la fuente y alimentan los dispositivos.

Tipos: En las computadoras podemos encontrar dos tipos de fuentes de alimentación: las AT y las ATX (AT Extended); estas últimas son las más utilizadas actualmente. Se diferencia con la antigua AT porque posee un interruptor que en las anteriores era una simple llave eléctrica que dejaba pasar o no la tensión de 110/200 V. En las nuevas ATX, el interruptor es en realidad un botón que al ser presionado, envía una señal eléctrica a la fuente indicándole que debe encenderse (como sucede con el botón del control remoto de la televisión). Con esto podemos deducir que la PC nunca queda del todo apagada, ya que, si así fuera, esta señal nunca pudo haber sido generada. No hay total interrupción del servicio.

MOTHERBOARD (PLACA MADRE)
Su función no es sólo de soporte físico (conectar mecánicamente placas, conectores, microprocesador y memorias), sino lograr que todos estos elementos, con sus características y señales diferentes, se puedan poner de acuerdo e intercambiar datos. Porque luego de la instalación mecánica de los componentes, para que el sistema funcione, es necesario que estén conectados físicamente entre sí y que alguien regule el tráfico de información y actúe de mediador entre las diferentes características que tienen las señales provenientes de cada elemento. Las tareas dentro del motherboard se distribuyen de la siguiente manera: - La conexión física de los elementos es responsabilidad de los conectores y de las pistas del circuito impreso de la placa motherboard. - La conexión eléctrica es responsabilidad de los buses del sistema. - De la regulación, adaptación y mediación entre las señales se encarga el microprocesador, - junto con su gran aliado en esta tarea, el chipset. Las pistas son conductores milimétricos de cobre impresos en las sucesivas placas de material aislante por las que circulan las señales eléctricas. Estas señales van a ser la información que intercambian los diferentes componentes del sistema con el micro. ELEMENTOS DE LA MOTHERBOARD Muchos de los elementos fundacionales de la placa motherboard siguen formando parte de ella (con sus respectivas mejoras), otros han pasado al exterior, y muchos otros se han incorporado. En la actualidad, una placa motherboard estándar cuenta básicamente con los elementos.

Conectores PS/2 para mouse y teclado: incorporan un icono para distinguir su uso específico. 2)Puerto paralelo: puerto utilizado por la impresora. Actualmente está siendo reemplazado por USB. 3)Conectores de sonido: los motherboards modernos incluyen on board una placa de sonido con todas sus conexiones. 4)Puerto serie: utilizado para mouse y conexiones de baja velocidad entre PCs. 5)Puerto USB: puerto de alta velocidad empleado por muchos dispositivos externos, como los escáneres o las cámaras digitales. 6)Puerto FireWire: otro puerto de alta velocidad empleado por muchos dispositivos externos. No todos los motherboards cuentan con una conexión de este tipo. 7)Red: generalmente los motherboards de última generación incorporan una placa de red on board y la conexión correspondiente.
Estructura y características del chipset Básicamente, un chipset está conformado por dos chips. Uno, el más importante, se denomina puente norte (que suele llevar un cooler), y maneja el bus del procesador, la memoria y el puerto AGP. El segundo chip es el llamado puente sur, y controla los buses de entrada y de salida de datos para periféricos (I/O) y dispositivos internos PCI e IDE. - Puente norte (Northbridge): como decíamos, la función principal de este chip es la de controlar el funcionamiento y la frecuencia del bus del procesador, la memoria y el puerto AGP. De esta forma, sirve de conexión (de ahí lo de "puente") entre el motherboard y los principales componentes: procesador, memoria y video AGP. Generalmente, las grandes innovaciones tecnológicas, como el soporte de memoria DDR o nuevos FSB, se implementan en este chip. La tecnología de fabricación de un Northbridge es muy avanzada, y su complejidad, comparable a la de un microprocesador moderno. Por ejemplo, en un chipset, el Northbridge debe encargarse de sostener el bus frontal de alta velocidad que lo conecta con el procesador. Si pensamos en los buses de 400 MHz y hasta 800 MHz de algunos los procesadores (como el Athlon XP o el Pentium 4), se resalta que su tarea no es menor, de ahí el agregado del cooler para evitar su recalentamiento. - Puente Sur (Southbridge): es el segundo chip en importancia y controla los buses de entrada y salida de datos para periféricos (I/O), y también determina el tipo de soporte IDE (ATA 66 o ATA 100, por ejemplo), la cantidad de puertos USB disponibles y el bus PCI. Los chips Southbridge modernos incorporan numerosas funciones, entre las que se encuentran:

controladores Serial ATA, de puertos USB 2.0, FireWire y audio de seis canales. Southbridge Básicamente, las mejoras en el Southbridge siempre apuntaron a aumentar la cantidad de funciones incorporadas en el propio chipset, lo cual incrementa significativamente la integración de dispositivos en un motherboard y se traduce en mayor rendimiento y menores costos de fabricación. - Sonido: las funciones de sonido fueron de las mejor aceptadas al integrarse en el chipset, ya que, ciertamente, el usuario medio no requiere de grandes capacidades en el aspecto sonoro de su computadora. Lo mejor es que cualquier solución de sonido on board puede igualar e, incluso, mejorar el rendimiento y la calidad de cualquier tarjeta de sonido antigua, como puede ser una Sound Blaster 16 (exceptuando el MIDI, que pocos utilizan). De todas formas, en la actualidad, las funciones de sonido integradas al Southbridge trabajan en conjunto con CODECs (codificadores/decodificadores de señales) impresos en los motherboards que son capaces de brindar una calidad aceptable en sistemas 5.1 y sonido 3D, aunque obviamente, estas características no pueden compararse con las de una placa de sonido de gama media. Por eso es que muchos fabricantes de motherboards optaron por desactivar las funciones que vienen con el chipset y, en su lugar, utilizar un procesador de sonido de una firma como C-Media (CMI). Sin embargo, algunos fabricantes de chipsets lograron una calidad excepcional en sus soluciones onboard, como sucede con NVIDIA - Red: Un tanto más reciente que el sonido, las funciones de red integradas al Southbridge han comenzado a ser más que comunes en la actualidad. En verdad, lo que se incluye generalmente en el chip es la conexión de bus y las funciones básicas, y se recurre a un controlador de red externo para regular el tráfico. También se está difundiendo mucho la inclusión de adaptadores de 1 Gbps (Gigabit LAN), cuyo nombre suena muy bien aunque, en realidad, no pueden funcionar nunca al máximo de sus capacidades bajo un bus PCI (ya que se necesita 200 MB/s si se quiere enviar y recibir datos simultáneamente a su máxima velocidad) USB 2.0 / IEEE 1394: los puertos USB ya son moneda corriente en el campo de los motherboards, desde la época de los primeros Pentium II. Sin embargo, hace poco tiempo que los puertos USB 2.0 (que proveen una tasa de transferencia 40 veces mayor a USB 1.1) se integran en el propio Southbridge.

BUSES La terminología relacionada con buses y líneas de control suele ser confusa, ya que algunas de las descripciones técnicas agrupan varios buses en uno solo o, por el contrario, otros desglosan un solo bus en varios, situación que procede del avance de la tecnología en este terreno en los últimos años. Pero se podría decir que, básicamente, los tipos de buses del sistema son tres: - bus de datos - bus de direcciones - bus de sistema Los buses de datos son los que transportan los datos o instrucciones desde y hacia el microprocesador. Dependiendo del sistema y del microprocesador, este bus de datos tendrá un "ancho" de bits determinado. Las primeras PCs tenían buses de 8 bits y, en la actualidad, pueden llegar a 64 bits. Los buses de direcciones determinan cuál es el destino y origen de los datos. Cada elemento

tiene una dirección, que es su identificación en el sistema, por lo menos para esta tarea (no pueden repetirse, para que no haya confusiones). Ahora bien, esto tiene que ver con los elementos que se encuentran montados directamente en la placa, pero además, el sistema se compone de otros elementos que se asocian a la placa mediante los zócalos o ranuras de expansión y que también deben estar interrelacionados. Entonces, parte de los contactos de las placas de expansión que se conectan en estos zócalos se integran en el bus de sistema. A su vez, cada tipo de ranura de expansión responde a un bus particular con características propias. Para que se entienda mejor: los slots o ranuras de expansión son la expresión física de los buses del sistema. En las PCs modernas, sólo se mantienen dos: el PCI y el AGP.

Bus PCI
Al bus PCI (Peripheral Component Interconnect) físicamente se lo identifica como el conector blanco (8,5 cm). Las placas PCI se identifican por tener los contactos más pequeños, juntos y alejados del conector externo del elemento. Este bus fue un diseño original de Intel que fue sometido al consenso del resto de la industria, que lo adoptó como estándar, categoría que mantiene hasta el momento. Bus AGP Al bus AGP (Acelerated Graphis Port) se lo reconoce por ser uno solo dentro del esquema del motherboard. Parecido físicamente al PCI, pero marrón y más alejado del borde que el resto, está diseñado exclusivamente para establecer la conexión con la placa de video.

Bus ISA Puede ser que algunas placas motherboard todavía conserven un slot conocido como ISA (Industry StandardArchitecture, aunque su nombre verdadero es ISA-32 o EISA), ya casi en extinción. Su velocidad era muy inferior a la actual AGP. PCiE como reemplazo de PCI Sin duda, tras leer la última ventaja que presentamos, se nota que PCI Express será un éxito como reemplazo del viejo y duradero bus PCI. Más allá de la inteligencia de la conexión de que disponen las distintas ranuras en un sistema PCI Express, otro punto para tener en cuenta es que la simplicidad de la conexión permite diseños más sencillos en los motherboards y, por lo tanto, éstos podrán reducir su tamaño.

Una línea básica PCI Express (x1) consta de tan sólo cuatro cables: dos para la transmisión de datos en un sentido, y dos para el otro. Cada uno de ellos trabaja a una frecuencia de 2.5 GHz, lo cual brinda una tasa de transferencia de datos de 2 Gbps (256 MB/s), dado que utiliza dos de cada diez bits para la corrección de errores. Ahora bien, debemos considerar que estos 256 MB/s se transmiten en un solo sentido, así que si contamos también el otro, alcanzamos 512 MB/s, una cifra para nada despreciable, teniendo en cuenta que el PCI estándar soporta un tráfico máximo de 133 MB/s (número que abarca ambos sentidos).

interfaz del disco
con sus sucesivas mejoras, es un ejemplo de permanencia en la arquitectura de una PC. Su presencia está casi desde los orígenes de las computadoras personales, y aún hoy es el estándar de conexión de las unidades de almacenamiento interno, concretamente discos duros y unidades de CD (lectoras, grabadoras o regrabadoras). En las placas se la reconoce porque no es un conector como los slots, en donde van tarjetas, sino que es una doble hilera de pines donde va el conector hembra asociado a un cable plano (o multipar), que tiene uno similar a ese en la otra punta, que va al elemento IDE. Además, son dos iguales que están pegados bajo los nombres de IDE 0 y 1 (a veces, erróneamente, IDE 1 y 2).

ATA SERIE La norma ATA no se quedó sólo en transmisión paralelo. En 2003 se introdujo una variante serie que se pretende reemplace prontamente a la paralelo (a partir de ese momento, denominada PATA o Parallel ATA). Esta variante serie puede lograr mayores velocidades, en la actualidad de unos 150 MB/seg, aunque las siguientes versiones podrían llegar hasta 600 MB/seg. Pero además, como sucede con la transmisión USB (también serie), el cable de conexión no consta de ochenta hilos, sino de apenas siete conectores; o sea que es más práctico en todo sentido y reduce las interferencias, algo que posibilitaría mayores distancias (hoy muy limitadas en el paralelo). Por último, vale destacar que cualquier motherboard actual soporta ambas normas.

No hay comentarios:

Publicar un comentario